
ACHIEVING DATABASE SECURITY THROUGH

DATA REPLICATION: THE SINTRA PROTOTYPE

Myong H. Kang, Judith N. Froscher, John McDermott, Oliver Costich, and Rodney Peyton

Naval Research Laboratory

Information Technology Division

Washington, D.C. 20375

Abstract

There are several proposed approaches for multilevel

secure (MLS) database systems which protect clas-

si�ed information. The SINTRA1 database system,

which is currently being prototyped at the Naval Re-

search Laboratory, is a multilevel trusted database sys-

tem based on a replicated data approach. This ap-

proach uses physical separation of classi�ed data as a

protection measure. Each database contains data at a

given security level and replicas of all data at lower se-

curity levels. Project goals include good performance

and full database capability.

For practical reasons (e.g., ease of evaluation, porta-

bility) the SINTRA database system uses as many

readily-available commercial components as possible.

In this paper, security constraints and the rationale for

the SINTRA prototype are described. We also present

the structure and function of each component of the

SINTRA prototype: the global scheduler, the query

preprocessor, and the user interface. A brief descrip-

tion of the SINTRA recovery mechanism is also pre-

sented.

1 Introduction

As government downsizes, there is a growing need

to exploit the sizable commercial investment in infor-

mation technology to carry out government responsi-

bilities more e�ciently and e�ectively. With greater

reliance on information systems, both government and

commercial organizations are vulnerable to attacks on

the con�dentiality, integrity, and availability of infor-

mation. For more than a decade the government has
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supported research in computer, communication, and

information security to protect against such threats.

The results of this research can provide the basis for

managing data securely in the new information infras-

tructure.

In this paper, we describe the SINTRA prototype

database management system. SINTRA enforces a

strong protection policy and provides both good per-

formance and the full data management capability of

conventional industry-standard database management

systems. The Naval Research Laboratory is develop-

ing the SINTRA prototype to demonstrate the fea-

sibility of using physical separation and replication as

the primary protection mechanisms for a database sys-

tem that provides both high assurance and multilevel

security.

First, we provide a brief summary of computer and

database security concerns and a survey of several

possible approaches to database security. Next, we

present an overview of the SINTRA prototype ar-

chitecture. A model of the security constraints en-

forced by the prototype allows consideration of how

these constraints a�ect the transaction model and data

model for the prototype. We then describe the process

structure of the prototype SINTRA scheduler and a

recovery strategy for this approach. The preprocessor

manages the security labels as data in the conventional

relational data model and ensures that proper modi-

�cations are made to user commands. Even though

the SINTRA prototype is really a MultiLevel Secure

(MLS) database server, a user interface has been de-

veloped that illustrates how labeled data can be shown

to the user. We conclude with descriptions of the SIN-

TRA prototype status, what we have learned, and fu-

ture questions that the prototype must address.
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2 Background

Organizations have long known the importance of

restricting access to sensitive information to prevent

competitors from learning about plans, new products,

or changes in strategies. One approach for control-

ling access to this information is to allocate the infor-

mation to sensitivity classes and restrict access based

on the consequences of the information's compromise.

This approach also requires that those who must ac-

cess sensitive information be assigned to authorization

classes commensurate with the sensitivity level of the

information they are allowed to access and their trust-

worthiness, which is assessed through a background

investigation.

When the government �rst used computers to pro-

cess sensitive information, all users had to be cleared

for access to the highest level information processed.

The logical extension of this policy would have resulted

in all workers being cleared for the most sensitive in-

formation. Because the government has not cleared

everyone to the highest level, it has been forced to use

some relatively insecure approaches to sharing infor-

mation among users with di�erent clearances.

Trusted computer products must be evaluated and

tested in an adversarial manner. For high-assurance

systems that must provide strong separation, the pro-

tection mechanisms must be simple and easy to evalu-

ate. Protection critical components must contain only

protection mechanisms and must mediate every ac-

cess by each user. These systems are more highly

engineered and crafted than most computer systems.

Protection critical components must be scrutinized in

an adversarial way that ensures that neither malicious

code nor covert channels have been introduced into

the system.

When high-assurance application systems are devel-

oped, system engineers must take great care to design

systems that take advantage of the strong separation

provided by these products but rely on them for lit-

tle else. The commonly accepted theory for developing

MLS systems is to develop untrusted applications that

run at a single level but can access all data at that

level and below. If the application is data intensive or

requires communication across security levels, achiev-

ing both high assurance and good performance is un-

usually di�cult. The thing to be avoided at all cost

is changing the protection critical part of an already-

evaluated high-assurance component. Any change in-

validates the evaluation. Now we can examine the

various approaches that have been taken to building a

high assurance, MLS database management system.

The most straightforward approach to providing

multilevel security in a database system is to design

the security mechanisms into the database system it-

self and trust the database to enforce the security pol-

icy. In practice this results in a low assurance system,

that is, the separation is weak. This kind of database

system is useful, but cannot interconnect the diverse

population of users expected for the new information

infrastructure. The reason for the low-assurance is the

complexity and size of modern database systems.

Less straightforward but more e�ective approaches

use a reference monitor to enforce the security policy.

The reference monitor is evaluated for high assurance

and the database system is designed to function un-

der the security constraints enforced by the reference

monitor.

Following this reasoning, the Multilevel Data Man-

agement Security Summer Study [Air83] recom-

mended three near-term approaches to solving the

multilevel database security problem. The three ap-

proaches are: integrity lock, kernelized, and dis-

tributed. Within the latter there are two sub-

approaches: replicated and non-replicated.

The integrity lock approach [Den85] uses a trusted

frontend, a single untrusted backend DataBase Sys-

tem (DBS), and encryption techniques to protect data.

A trusted frontend applies an encrypted checksum to

data stored by an untrusted backend database system.

The integrity lock approach is computationally inten-

sive because checksums have to be computed whenever

data are inserted or retrieved. Since the trust is in the

frontend �lter and the backend DBS stores data from

multiple security levels, this architecture is susceptible

to Trojan horse attack. Hence this approach cannot

be used for highly-assured MLS DBS (e.g., a B3 or A1

system [DoD85]).

The kernelized approach [Lun90], relies on decom-

posing the multilevel database into single-level �les

which are stored separately under the control of a

security kernel enforcing a mandatory access control

(MAC) policy. Separate untrusted DBS are run at

each security level. Decomposing multilevel relations

into single-level relations so that the recomposition of

the fragments is the same as the user's view of the

multilevel relation has, in every case, presented many

challenges. There are also problems in preserving full

database functionality (e.g., transaction management,

data model) while providing the required security. Ma-

terializing multilevel relations from single-level base

relations requires fairly complex mechanisms and may



degrade performance. In addition, the need to do

this materialization has forced limitations on the data

model (e.g., uniform classi�cation of keys [Lun90]) and

results in di�culties in representing many-to-many

relationship [KCF93b]. Since this approach uses a

trusted operating system to enforce separation of data

at di�erent security levels, the security of this archi-

tecture is as strong, in theory, as the security of the

trusted OS.

The distributed approach comprised two architec-

tural sub-approaches (1) each DBS has data at a sin-

gle security level (non-replicated approach), and (2)

each DBS contains data at a given security level and

replicas of all data at lower security levels (replicated

approach).

The non-replicated approach has been investigated

by Jensen et. al. [Jen89, OcG88]. This architecture

has a trusted frontend and many untrusted backends

which may be commercial DBSs. Each backend con-

tains data of only a single security level. This ap-

proach has inherent security problems because higher

level queries have to be propagated to lower level un-

trusted backends to request data. Sending requests

down to lower security levels introduces a covert chan-

nel, which can be used to transmit information from

higher level backends to lower level backends. Hence,

we don't expect that this approach can be used for

highly-assured MLS DBS. This approach also can yield

reduced performance because it may require fragments

to be transferred from a low backend DBS to a high

one in order to present a multilevel relation to users.

The replicated approach uses physical separation as

a protection measure. A Trusted Front End (TFE)

mediates access to separate Untrusted Backend DBSs

(UBD) for each security class. Each backend DBS

contains information at a given class and replicated

information from all lower backend databases. Hence,

all the information that a user can legitimately view

is located at the backend corresponding to the user's

authorization.

3 Description of The SINTRA

System

Security, performance, and portability concerns led

NRL to the initiation of a project to investigate repli-

cation using commercial DBS as a promising alter-

native for building a MLS DBS. Goals include good

performance and full database functionality.

3.1 Practical Considerations

Security is an important issue for many organizations.

However, there are other important issues, such as the

reduction of production, operational, and maintenance

costs and minimizing development time, e�ort, and

evaluation costs. The ability to integrate new technol-

ogy into high assurance, MLS systems in a straight-

forward, timely fashion makes the replicated approach

very attractive to cost conscious decision makers.

One way to achieve these goals is to make maxi-

mum use of existing products which are already tested

and evaluated. Those products are usually maintained

by the vendors' sta�s. For example, special purpose

computer systems can be built by connecting general

purpose commercial products together. Many inter-

face standardization e�orts (e.g., the OSI standard)

make this approach more viable. Developing a new

product from commercial subcomponents has several

advantages:

� Minimal development and maintenance costs.

� Easy to upgrade. Once better and cheaper prod-

ucts are on the market, they can be easily incor-

porated.

� Easy testing and evaluation. Most of the subcom-

ponents, which are commercial products, have

been evaluated.

� Easy to connect. Since each subcomponent may

already conform to interface standards, it is likely

that the new product will be easy to interface to

other products.

Based on the practical considerations above, the SIN-

TRA prototype uses as many commercial components

as possible, resulting in the need for relatively little

new work to construct the overall MLS system. In the

remainder of this paper, we show how the SINTRA

project achieves the practical goals that we speci�ed.

3.2 Overview

The SINTRA database system consists of one trusted

front end (TFE) and several untrusted backend

database systems (UBD). The role of the TFE includes

authenticating users, directing user queries to the

proper backend, maintaining data consistency among

backends. The UBD at each security level contains

data at its own security level, and replicated data from

lower security levels.



The SINTRA database system prototype at the

Naval Research Laboratory uses a Honeywell XTS-

200 system, which is a high assurance trusted OS

(B3 rated system), as a trusted frontend. Since each

UBD is treated as a \black box" (i.e., inputs and out-

puts of the system are known, but its internal behav-

ior is not known), each UBD can be any commercial

database system. Currently, untrusted ORACLE 7

database running on SUN4/300 is used as each back-

end database. The backend and frontend comput-

ers are connected through dedicated Ethernet connec-

tions. Since the SINTRA security policy is enforced

by the frontend, the security of this architecture is as

strong as the security of the trusted frontend. Hence,

the SINTRA system will be a B3 MLS DBS. Figure 1

illustrates the SINTRA architecture.
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Figure 1: The SINTRA Architecture.

When a user attempts to login to the SINTRA proto-

type, the trusted connection checks the user's security

level and establishes a connection to the network inter-

face at the backend for that security level. Now, the

user is ready to issue commands. A user query which is

received at the backend will be modi�ed by the query

preprocessor, if necessary. A modi�ed query will be

submitted to the ORACLE database system through

the global scheduler. The responsibilities and the de-

tailed description of these components will appear in

sections 5, 6, 7, and 8.

The SINTRA prototype is based on the following:

� All UBDs use the same database query language

(e.g., SQL).

� The TFE changes the database states of the UBD

only through database queries.

� Each UBD performs transaction management. (If

it produces serializable and recoverable histories,

SINTRA will as well.)

Note that the above assumptions enable us to treat

each UBD as a black box that operates autonomously

without the knowledge of other UBD's or global sched-

uler. Hence, no modi�cation of the commercialDBS or

the commercial frontend is required. However, we can-

not expect to obtain the desired security and function-

ality by simply connecting commercial products. Cus-

tom processes, such as query preprocessor and global

scheduler, ensure the delivery of desired database se-

curity and functionality.

The SINTRA approach has several advantages.

1. Data retrieval performance is better because the

SINTRA system does not materialize the user's

view from single-level relations (as do the kernel-

ized and non-replicated distributed architectures)
2.

2. Mandatory access control is enforced through

physical separation of data. Since SINTRA uses

an evaluated product as a trusted frontend, very

little trusted code needs to be developed to ensure

that this separation is maintained.

3. Development and maintenance cost can be re-

duced because commercial frontend and backend

database systems are widely available.

4. Performance can be improved by using opti-

mization and parallelization techniques that have

been developed for conventional databases, be-

cause the replicated architecture uses conven-

tional database systems as UBDs. Uniproces-

sor or multiprocessor computers can be chosen as

backend computers without a�ecting the security

policy.

5. The system is portable and scalable because com-

mercial untrusted systems are, in general, much

more portable than trusted systems.

2Preliminary performance analysis indicates that SINTRA
may outperform conventional database systems due to the par-

allel nature of the processing [McM94].



4 The SINTRA Models

In this section, we briey discuss the security, trans-

action, and data models for SINTRA. These models

are necessary in the development of any multilevel se-

cure DBS and a�ect the decisions concerning the as-

signment of functions to each component of the SIN-

TRA system.

4.1 Security Model

The security model used here is based on that of Bell

and LaPadula [BeL76]. The model is stated in terms of

subjects and objects. An object is a nonactive entity,

such as a �le, a relation, a tuple, or a �eld in a tuple.

A subject is an active entity, such as a transaction

or process, that can request access to objects. Every

object is assigned a sensitivity classi�cation, and every

subject a clearance. Classi�cations and clearance are

collectively referred to as security classes (or levels).

The database system consists of a �nite set D of

objects (data items) and a set T of subjects (transac-

tions). There is a lattice S of security classes with

ordering relation <. A class Si dominates a class Sj
if Si � Sj. There is a labeling function L which maps

objects and subjects to a security class:

L: D [ T ! S

We consider two mandatory access control require-

ments:

(Simple Security Property) If

transaction Ti reads data item x then L(Ti) �

L(x).

(Restricted ?-Property) If transaction Tj writes

data item x then L(Tj) = L(x).

The simple security property allows a transaction to

read data items if the security level of a transaction

dominates the security level of data items. The re-

stricted ?-property allows a transaction to write if the

security level of a transaction is the same as that of

data items (i.e., no write-ups or write-downs are per-

mitted). Write-ups (i.e., Ti cannot write to data item

x if L(Ti) < L(x)) are undesirable in database systems

for integrity reasons (i.e., since a user cannot see what

he has written, he may introduce an error)3.

4.2 Transaction Model

Traditionally, transactions are modeled as a sequence

of read and write operations on data items. However,

3This is not to say that the frontend OS cannot write up to
perform some functions of the overall DBS. This OS has its own

compatible security model.

the traditional transaction model is not adequate to

model transactions for the SINTRA system. Since the

SINTRA treats each UBD as a black box, the global

scheduler of the SINTRA system has very little knowl-

edge about the behavior of the local scheduler (i.e.,

the scheduler of commercial DBS) or the physical lay-

out of data. For example, the global scheduler has no

knowledge about where a speci�c tuple is located or

which physical page should be locked. Sometimes the

tuples which will be modi�ed are unknown until the

computation based on existing data is completed.

We adopt a layered model of transactions, where a

transaction is a sequence of queries, and each query

can be considered as a sequence of reads and writes.

For example, replace and delete queries can be

viewed as a read operation followed by a write op-

eration which must be executed atomically. insert

can be viewed as a write operation, and retrieve can

be viewed as a read operation. A layered view of two

transactions T1 and T2 is shown in �gure 2. Note this

decomposition is similar to work of Weikum [Wei91]

and Moss [Mos85].

w23[x]r23[x]w22[y]r21[z]w13[y]r13[y]w12[u]w11[z]r11[z]

T2T1

q23q22q21q13q12q11

l(0)

l(1)

l(2)

Figure 2: Layered model of two transactions.

De�nition 1. A transaction Ti is a sequence

of queries terminated by either a commit(ci) or an

abort(ai), i.e., Ti = <qi1, qi2, ..., qin, ci>. Each query,

qij, is an atomic operation and is one of retrieve,

insert, replace, or delete.

To model the propagation of updates produced by a

given transaction to higher security level databases,

we de�ne an update projection.

De�nition 2. An update projection Ui, corre-

sponding to a transaction Ti, is a sequence of update

queries, e.g., Ui = <qi2, qi5, ..., qin, ci> obtained

from transaction Ti by simply removing all retrieve

queries.



Note that no aborted transaction need be propagated.

Hence, update projections are always terminated by a

commit.

To describe concurrency control mechanisms, we

adopt the following de�nition of conict.

De�nition 3. Two operations at the same layer con-

ict if they operate on the same data item and at least

one of them is either write, insert, delete, or,

replace. Alternatively, two operations conict if they

operate on common data and not both are retrieve

or read operations.

4.3 Data Model

Because the SINTRA prototype allows no modi�ca-

tion of the commercial UBDs, it is necessary to treat

the security labels of the data simply as additional

data, conventionally stored. A more abstract data

model might permit a more re�ned representation of

the semantics, but the SINTRA prototype data model

is limited to representing labels as values of label at-

tributes.

Typically, labels can be associated with either val-

ues of the individual ordinary attributes or with an

entire tuple. The SINTRA data model is based on an

element-level classi�cation scheme. A multilevel rela-

tion scheme is denoted by

R(A1, C1, A2, C2, . . ., An, Cn, TL)

where each Ai is a data attribute over domain Di,

each Ci is a classi�cation attribute for Ai and TL is

the tuple-level attribute. The domain of Ci and TL

is speci�ed by a range [Li, Hi] in the security lattice.

R(A1, A2, . . ., An, TL) is the underlying relation as

viewed by the user.

Let t[Ai] denote the value corresponding to the at-

tribute Ai in tuple t, and similarly for t[Ci] and t[TL].

t[TL] in the SINTRA system simply speci�es that a

tuple t is generated or modi�ed by a t[TL]-level user.

On the other hand, t[Ci] speci�es that the correspond-

ing t[Ai] originated from t[Ci]-level. Operations on

the database that allow retrievals and updates are

presented in [KCF93a]. There are, in addition, con-

straints among the values of the Ci and TL [KCF93a]

which are of little importance for explaining the pro-

totype.

5 The SINTRA Scheduler

The replicated architecture provides mandatory ac-

cess control by physically separating data. However,

this approach introduces another problem, namely the

maintenance of mutual consistency of the replicas.

Our research suggests that accepting the replica con-

sistency problem in return for a virtually free high as-

surance, strong protection mechanism is a choice well-

made. In this section, we introduce the structure and

functions of the global scheduler. True distribution

of these functions is, in the abstract, of little conse-

quence, but has been done in the prototype in a par-

ticular way to maximize performance.

5.1 Responsibilities

Since each UBD in a replicated architecture contains

data from lower levels, update queries have to be prop-

agated to higher-security-level databases to maintain

the consistency and currency of the replicated data.

If this propagation of update queries is not carefully

controlled, inconsistent database states can be created

among backend databases. Consider that two lower

level update transactions Ti and Tj are scheduled with

serialization order <Ti, Tj>. at the lower level back-

end database system. Since these two transactions are

update transactions, they have to be propagated to the

next higher level. If these two transactions are sched-

uled with serialization order <Tj , Ti> at the next

higher level, an inconsistent database state between

these two backend databases may be created by the ex-

ecution of conicting operations at the higher level. It

can be demonstrated that even the serialization order

of non-conicting transactions has to be maintained

to preserve one-copy serializability [KFC92]. This is a

parallel result that has been reported in the context of

multidatabase systems [Du93]. Therefore, the serial-

ization order introduced by the local scheduler at the

user's session level must be maintained at the higher

level UBDs.

The concurrency control algorithm which the SIN-

TRA prototype uses has two types of schedulers,

global and local schedulers. The global scheduler en-

forces data consistency among di�erent security lev-

els. On the other hand, the local scheduler, which is

the unmodi�ed commercial concurrency controller of

a UBD, manages transactions and update projections

at that UBD. The local scheduler deals with layer l(0)

in �gure 2, and the global scheduler deals with layer

l(1) and upper layers. The global scheduler detects

conicts at level l(1). Therefore, no knowledge of the

speci�c items to be accessed or even the granularity

of the lower-level concurrency controller is needed or

used by the global scheduler.

SINTRA's global scheduler resolves the data-



inconsistency problem by guaranteeing that the serial-

ization order introduced by the local scheduler at the

user's session level is maintained at the higher level

UBDs. In summary, the global scheduler performs the

following tasks:

� Receive queries from the query preprocessor and

the global scheduler of lower security levels, and

send them to the backend database.

� Guarantee that the serialization order introduced

by the local scheduler at the user's session level is

maintained at the higher level UBDs.

� When a transaction is committed, send an update

projection to higher security level backends.

Since user transactions and update projections are

submitted independently, their serialization orders are

not known to the global scheduler. Hence, the take-a-

ticket[Geo91] operation is used to �nd the serialization

order among update projections and user transactions.

Generalized algorithms and a theory of a global sched-

uler for the SINTRA database system have been pre-

sented by Kang, Froscher, and Costich in [KFC92].

As previously mentioned, the global scheduler re-

sides partially in the TFE and partially in the UBD.

This was done for performance rather than theoretical

reasons.

5.2 Structure

The methodology used for developing the SINTRA

global scheduler closely resembles the object-oriented

development method [Boo86]. We identify many ob-

jects, queries, transactions, processes, etc., and es-

tablish the relationships among these objects. Many

layers are also introduced to hide lower-level details.

C++ has been chosen as our main implementation

language because it provides the capabilities of data

hiding and abstraction of interface. Scheduler compo-

nents which are executed on the frontend are written

in C because the XTS-200 provides neither a C++ in-

terpreter nor the C compiler which can compile C code

that is generated by a C++ interpreter.

The process architecture of the global scheduler is

as follows (see also �gure 3):

1. Terminal: User terminals or workstations.

2. Frontend Connector: Establish a virtual con-

nection between the user and the backend depend-

ing on the user's session level.

3. Database Server: When user login is requested,

spawn a database server child to service the re-

quest.
3a. Database Server Child: Ensure connections

among user, preprocessor, and user transaction

scheduler.
4. Preprocessor: Query modi�cation (see section

7).
5. User Transaction Scheduler: Submit user

transactions to the ORACLE database. Send the

response fromORACLE to the user. Also send an

update projection to the propagation scheduler if

a user transaction is committed.
6. Propagation Scheduler: Receive transactions

and send then to the corresponding frontend up-

date projection receiver according to the serial-

ization order.
7. Projection Receiver: Receive update projec-

tions from the propagation scheduler and store

them for retrieval by the projection sender.
8. Projection Sender: Read-down to get the up-

date projections which are in the lower level pro-

jection receiver and send the projections to the

update projection scheduler.
9. Update Projection Scheduler:

Receive update projections from the lower level

backend, submit them to the ORACLE database,

and send them to the propagation scheduler.
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Figure 3: The Process-level Architecture.



Our process architecture has been implemented using

C++ objects, and complex interprocess communica-

tion details have been hidden by an interprocess com-

munication (ipc) class. A detailed description of each

object and methods is given by Kang and Peyton in

[KaP93a].

6 Recovery Mechanisms

Recovery in the SINTRA MLS DBS is largely de-

pendent on the recovery mechanisms of the commer-

cial DBSs that are used at the backends. Without

the propagation of update projections, SINTRA ap-

pears to be a single-level DBS. Hence there is no need

for recovery mechanisms between users and the UBD.

However, the SINTRA database system needs recov-

ery mechanisms that guarantee the delivery of update

projections from user transaction scheduler to the next

level DBS (i.e., path 5 ! 6 ! 7 ! 8 ! 9 ! DBS in

�gure 3).

To ensure that committed transactions will not be

lost (except by media failure), processes responsible for

the propagation of update projections use persistent

queues to log update projections. Update projections

are kept in the log until the next process within the

propagation chain acknowledges that it has received

the update projection. An acknowledgment from a

receiver guarantees the sender that the receiver has

safely processed the update projection.

The above technique works without creating a

covert channel if the sender and receiver are at the

same security level. However, if the same technique is

used when the security level of the receiver is higher

than that of the sender, then there is a covert chan-

nel. Alternatively, when a message is delivered to a

receiver, it sends either an ack or control back to the

sender acknowledging that the message is in stable log.

However, if the security level of the sender is lower

than that of the receiver, then the timing of an ack

can be used as a covert timing channel. A detailed

description of the problem and proposed solutions are

presented by Kang and Moskowitz [KaI93].

When the system recovers from a failure, it needs to

know the status of DBS (i.e., the last transaction that

has been committed) so that the system can guaran-

tee the consistent states among DBS and persistent

queues in the global scheduler. The SINTRA recovery

mechanismuses the ticket which was introduced in sec-

tion 5.1 to examine the status of the DBSs. When the

system recovers, the processes of the global scheduler

examine the status of the DBS and their persistent

queues (i.e., sort out which transactions are commit-

ted and which ones are not). Then the update pro-

jection scheduler will submit update projections which

have not been committed to the DBS and the prop-

agation scheduler will send committed transactions to

the projection receiver. A detailed design description

and high-level pseudo-code are presented in [KaP93c].

7 The Query Preprocessor

In this section, we explain the need to modify user

queries and the internal structure of the query prepro-

cessor. The SINTRA query preprocessor is written in

C++. YACC++ and LEX++ are also used to build

the query parser.

7.1 Responsibilities

The SINTRA query preprocessor plays an important

role in maintaining data consistency among di�er-

ent backend databases, preserving data integrity, and

bridging the semantic gap between conventional and

multilevel-secure databases. The SINTRA query pre-

processor has the following responsibilities:

1. In the SINTRA database system, if a high-level

user is allowed to modify low data which are lo-

cated at the high-level backend database, then in-

consistent database states between high and low

backend databases can be created. Therefore, the

query preprocessor must inspect, and either re-

ject or modify users' update queries so that the

backend database system only modi�es users' lo-

gin level data | it is also assumed that no write-

up is allowed.

2. There is also some informationwhich can be mod-

i�ed only by the system although it can be dis-

closed to the user. For instance, information

about the classi�cation of a tuple (TL attribute

values) cannot be modi�ed by the user. It is the

responsibility of the query preprocessor to guar-

antee the integrity of such data.

3. SINTRA uses conventional relational database

systems as backend databases. These conven-

tional relational databases use SQL, which is

based on the conventional (single-level) relational

algebra and the semantics of conventional update

operations [Ull82]. On the other hand, a mul-

tilevel relational database is based on a multi-

level relational algebra and the semantics of mul-

tilevel relational update operations. Therefore, a



SINTRA user query which is posed to an MLS

database in multilevel SQL must be translated

into other queries (based on the conventional SQL

used by the UBD) that conform to the semantics

of conventional update operations.

To perform the above responsibilities, the SINTRA

query preprocessor intercepts, inspects and modi�es

user queries before they are submitted to the ORA-

CLE database system.

7.2 Structure

Consider the following user query, delete from R

where A1 = 5 and TL = 'L'. It is a legitimate query

if an L-user (the user whose session level is L) issued

the query. However, if an H-user issues the same query

then the query must be blocked (i.e., otherwise this

query creates an inconsistent copy of L-data at the H-

backend). Therefore, when the SINTRA preprocessor

makes decisions on how a user query should be modi-

�ed and what kind of query has to be blocked, it has

to be based not only on the syntax of the individual

query but also on the session level of the user who

issues the query. Hence, simple syntactic checking is

not su�cient to determine if a query is legitimate or

not. We chose the following process organization:

(Parse Tree)
IR

(1)

IR

to
SQL

(2)

Validation
(3)

IR

Restructure

(4)

Optimizer

Query

(5)

SQL

to

IR

Figure 4: The Structure of the Query Preprocessor.

First, a user query is parsed and converted into an

internal representation (IR) which is a parse tree. All

syntactically invalid queries and some invalid queries

which can be detected without knowing the security

level of the user will be rejected at this stage. For ex-

ample, a user query update R set a = 5, a# = 'H'

. . .4 will be rejected at this stage, because the query

4The SINTRA preprocessor needs to distinguish regular at-
tributes from classi�cation attributes. Hence, the SINTRA pre-
processor reserves one character (e.g., '#') for preprocessor use
only. For example, a user de�nes an attributes a in a speci�c
relation, then its corresponding classi�cation attribute will be

a#.

preprocessor knows that a# is a classi�cation attribute,

and users are not allowed to modify classi�cation at-

tributes.

The second process, validation, of �gure 4 inspects

all syntactically valid queries again to check if they

can create any inconsistent replicas. For example,

delete from R where a = 5 and T#L = 'L' by a

H-user will be rejected at this stage because the H-

user tries to delete L-data. Hence, responsibilities (1)

and (2) in section 7.1 are accomplished by the �rst and

second stages.

The third process, restructure IR, performs the main

mission of the SINTRA query preprocessor, i.e., query

modi�cation. It will modify parse trees based on

the SINTRA multilevel relational algebra and the

semantics of update operations for multilevel rela-

tions [KCF93a]. Consequently, functions (3), (4),

and (5) in section 7.1 are accomplished at this stage.

For example, a H-user's query, delete from R where

b = 'xxx', will be translated into delete from R

where b = 'xxx' and TL = 'H' . A detailed design

description of the SINTRA query preprocessor ap-

pears in [KaP93b].

The fourth process, query optimizer, optimizes parse

trees based on the knowledge of the implementation.

Finally the �fth process, IR to SQL, converts parse

trees into conventional SQL before the query is sub-

mitted to ORACLE at the UBD.

8 The User Interface

The SINTRA system uses a client-server architec-

ture for its user interface. The user interface resides

on the client side and the DBS resides on the server

side. Network interface units reside in both clients and

servers (see �gures 1 and 5).
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Figure 5: A Detailed Description of Network

Interface.

The network interface process is responsible for direct-

ing queries from the user interface to the proper server,

and directing responses from the server to the proper

client. The single-level process in TFE, which resides



between clients and servers, assures that the communi-

cation between two network interfaces does not violate

the SINTRA security policy.

Note that each client is dedicated to one security

level, and identi�cation and authentication procedures

are still performed by the TFE with the current con-

�guration. However, this restriction (i.e., a client can

login only one security level) can be removed.

9 Status and Conclusions

The prototype has demonstrated the feasibility of

replication as a path to high-assurance security, good

performance, reduced maintenance cost, and porta-

bility. This architecture uses physical separation as

a protection measure. Alternatively, the mandatory

access control of the SINTRA approach depends on

the MAC of the TFE and the physical separation of

UBDs, and the discretionary access control (DAC) of

the SINTRA approach depends on the DAC of UBD.

Since a system based on this architecture can be

built from commercial DBSs, it is very portable and

maintenance is relatively simple. High performance

is achieved by storing all information that a user can

legitimately view at one backend.

9.1 Status of Prototype

The current status of the SINTRA implementation is

as follows:

� The design and implementation of the global

scheduler are both �nished.

� The design and implementation of the query pre-

processor are both �nished (i.e., a subset of SQL

and full operations that are discussed in [KCF93a]

have been implemented).

� The design of the user interface is �nished. There

are many commercial user interface tools for the

ORACLE database. We hope to use those tools

for the SINTRA. However, almost all user inter-

face tools for ORACLE use SQL*Net for commu-

nication between the interface tool itself and OR-

ACLE. Since the SINTRA preprocessor needs to

intercept, inspect and modify user queries before

these are submitted to ORACLE5, the SINTRA

preprocessor needs to know the internal format of

5The query decomposer of the KSR1 computer performs the

same task to parallelize the queries.

packets that SQL*Net uses. Until we have that in-

formation, we will proceed to implement our own

user interface.

� The design of the recovery mechanism is �nished

and the implementation of the mechanism is in

progress.

9.2 Lessons Learned

This prototyping exercise has demonstrated the feasi-

bility of the replicated architecture approach �rst de-

scribed in [Air83]. Prior to the SINTRA project, none

of the high assurance approaches described in [Air83]

had been demonstrated. We have learned several im-

portant lessons from our development of the SINTRA

prototype.

� The strong separation of concerns inherent in the

replicated architecture allows the use of commer-

cial DBSs without modi�cation. This means that

the replicated approach can accommodate new

database technology without signi�cant porting

e�ort or reengineering.

� Several replica and concurrency control algo-

rithms have been developed for the project and

have been proven correct. The implementation

of the SINTRA global scheduler moved our re-

sults from theory to practice and showed that the

replicas remained consistent when the database

was updated.

� The trusted OS for the TFE required no modi�-

cation. Little additional software was developed

to run on the TFE. We were successful in mini-

mizing our dependence on the TFE.

� The replicated architecture approach imposes

fewer data model restrictions than kernelized ap-

proaches.

� Preliminary performance analysis and simulation

results indicate that the replicated architecture

provides good performance.

� This approach does require more hardware than

the kernelized approach. As hardware costs be-

come lower, it will be a trade-o� decision for users

to decide whether improved performance and us-

ability are worth the additional hardware cost.

We hope that the SINTRA prototype will serve

as the catalyst for future high-assurance multilevel



database research. Our plan is to use B1 DBSs run-

ning on compartmented mode workstations as backend

databases. This con�guration will provide the B1 sep-

aration among compartments, and the B3 separation

among security hierarchies.
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